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Oncology clinical trials frequently use anatomical imaging to provide indices of
therapeutic response.  Most trials employ simple linear measurements to estimate changes in
tumor mass in response to the investigational therapy as compared with a baseline measure.
Response criteria are pre-established by the protocol to define some expected percent change in
one or a combination of measurements for classification of response, stable disease, or
progression.  There is considerable controversy over the adequacy of these measurements and
subsequent definition of response criteria, and recently there have been attempts at
standardization (RECIST).  Although this is an important step forward, it is overshadowed by the
new challenges that have resulted from the widespread inclusion of functional imaging in clinical
trials of new targeted therapies.

These challenges are neither trivial nor remote and are currently being faced in the
growing number of clinical trials related to angiogenesis, particularly in the evaluation of
therapeutic response to angiostatins.  Because effective angiostatin therapy may not lead to
substantial tumor mass/volume reduction, especially soon after therapy, conventional
measurements of response may be insensitive or markedly delayed even when there is a
significant therapeutic effect.  Interest in imaging techniques that can provide an early indicator
of effectiveness at a functional or molecular level has therefore increased.  Current clinical trials
employ a wide range of imaging techniques, including PET (especially with FDG), MRI,
ultrasound and occasionally CT, in an attempt to evaluate changes in blood volume, blood flow
alterations, permeability alterations, and in the case of PET changes in glucose metabolism
(FDG).  It is unclear whether any of these techniques can distinguish new vascular growth from
existing tumor vascularity or, most importantly, provide a quantitative measure of significant
reduction in tumor vascular growth.

In an attempt to define the status of currently available clinical imaging and to determine
the potential of imaging technology at the translational stage of development, the Biomedical
Imaging Program of the National Cancer Institute sponsored “Angiogenesis Imaging
Methodology: AIM for Clinical Trials,” a workshop held February 26-27, 2000 in Incline
Village, Nevada.  The workshop brought together experts from four imaging modalities
(Ultrasound, CT, PET/Nuclear, MRI) to discuss the current and future role of imaging in clinical
trials of anti-angiogenic therapy in oncology.  Each modality team prepared extensive
background reports that were presented and discussed at the meeting.  This series of publications
comprises the final reports, reviews from the two keynote speakers, and the recommendations of
the teams, and presents the current status and future potential of imaging in the detection and
evaluation of angiogenesis.

This WEB submission includes the entirety of one of the keynote overview presentations
and the recommendation sections of each modality panel.  Academic Radiology will publish the
complete set of documents including both keynote submissions and the extensive reviews
generated by each modality panel in a special addition later this year.

-James L. Tatum, MD
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TUMOR ANGIOGENESIS:
MOLECULAR PATHOLOGY, THERAPEUTIC TARGETING, AND IMAGING

William W. Li, MD

INTRODUCTION

Angiogenesis, the growth of new blood vessels, is a fundamental physiological process
required for development, reproduction, wound repair, and response to ischemia.1    Pathological
angiogenesis, often referred to as neovascularization, is associated with disease conditions,
including retinopathies, arthritis, psoriasis, and cancer.2-5  Folkman first hypothesized in 1971
that solid tumors remain growth restricted to 2-3 mm in diameter until the onset of angiogenesis.6

Subsequent investigations have broadened the study of angiogenesis into a distinct field of
scientific inquiry that has yielded insights into vascular growth regulation, including: the
identification, sequencing and cloning of at least 20 angiogenic growth factors, their receptors
and signal transduction pathways; the discovery of endogenous angiogenesis inhibitors; and the
cellular and molecular characterization of the angiogenic phenotype in human cancers. (For
reviews, see references 7 and 8.)

One practical dividend from angiogenesis research is the large-scale biopharmaceutical
industry effort to develop new angiogenesis-modulating drugs.  Angiogenesis-dependent
diseases afflict as many as 500 million patients in western nations each year.9  Both pro- and
anti-angiogenic drugs  are in advanced stages of clinical development.   "Antiangiogenesis"  is an
emerging therapeutic strategy in clinical oncology aimed at halting cancer progression by
suppressing the tumor blood supply.6  A large body of preclinical animal research, and individual
case reports in cancer patients support the validity of antiangiogenic therapy.10-14  In the US,
Canada, Europe, and Australia, there are more than three dozen experimental antiangiogenic
agents currently in use in human clinical trials aimed at a broad range of solid tumors, multiple
myeloma, leukemia, and lymphoma.15-17  To date, an estimated $4 billion has been invested by
the public and private sectors to develop such agents, making this one of the most heavily
invested areas of cancer research in human history.

This paper reviews the molecular pathology of tumor angiogenesis, surveys the
therapeutic targets considered attractive for antiangiogenic drug development, and outlines the
new paradigms for cancer detection, intervention, and imaging that are emerging.  Finally,
unique characteristics of tumor angiogenesis that may be exploited for evaluating the angiogenic
process are discussed.

THE MOLECULAR PATHOLOGY OF ANGIOGENESIS IN TUMOR GROWTH & PROGRESSION

Early tumor interactions with the vasculature
All solid tumors begin their existence as small populations of transformed cells whose

growth is governed by a balance between tumor cell proliferation and apoptosis.18  Because early
tumors lack an independent blood supply, tumor expansion is restricted by the lack of access to
circulating oxygen, nutrients and growth factors.   To overcome these limitations, early tumors



grow directionally towards pre-existing nearby blood vessels, a process termed ‘vessel
cooption.’19  Tumor cells may infiltrate these blood vessels regionally to form a ‘mosaic’ vessel
consisting of normal vascular endothelial cells interspersed with infiltrative tumor cells.   Such
changes may occur when the tumor mass is comprised of only 60-80 cancer cells.20  Vascular
cooption serves only the tumor periphery, however, so gradual tumor expansion leads to
increasing central hypoxia.  Hypoxia induces gene expression of the angiogenic growth factor,
vascular endothelial growth factor, through hypoxia-inducible factor-alpha, a phenomenon also
observed in ischemic cardiovascular and ocular tissues.4,21-23  This initial phase of limited tumor
growth may persist for months or even years.

Switch to the angiogenic phenotype enables tumor progression
A rapid phase of tumor growth occurs when the tumor switches to its angiogenic

phenotype.  This process has been extensively studied in a transgenic mouse model of multi-
stage pancreatic islet cell carcinogenesis (RIP1-Tag2),  where clonal expansion of a subset of
hyperplastic cells secreting angiogenic growth factors leads to frank tumor progression.24,25  Both
human and experimental cancers produce numerous peptide angiogenic factors, although
vascular endothelial growth factor (VEGF), acidic and basic fibroblast growth factors (aFGF,
bFGF), and platelet-derived endothelial cell growth factor (PD-ECGF) are perhaps the best
studied (Table 1).  The production of angiogenic factors by tumors is profound and sustained. In
human cancers, factors such as VEGF, bFGF, TGF-beta, TNF-alpha, and PD-ECGF can be
detected in situ within tumor specimens, circulating in serum, plasma and cerebrospinal fluid,
and excreted in the urine.26-29 In addition to hypoxia, other factors in the tumor
microenvironment, such as acidosis and inflammation, may amplify angiogenic factor
expression.30-32

Once angiogenesis is initiated, tumors expand exponentially and invade tissues locally.
Tumor cells secrete angiogenic factors that promote new blood vessel growth, while vascular
endothelial cells provide oxygen and paracrine growth factors that drive tumor cell growth.33

Thus, a virtual cycle sustains both cellular compartments.2   Neovascular channels allow tumor
cells to metastasize hematogenously.  For example, ten to 100 million endothelial cells are
required to support the smallest palpable breast cancer, one centimeter in diameter, which weighs
one gram and consists of approximately one billion cancer cells.34   For a tumor this size, 2 x 106

cancer cells are shed into the systemic circulation every 24 hours.35   Of these, only one cancer
cell survives and lodges in a distant organ as a micrometastases, remaining quiescent until the
tumor angiogenesis occurs in that site.

Establishment of the angiogenic phenotype requires tumors to produce angiogenic factors
in excess of local angiogenesis inhibitors.36   The first endogenous tissue angiogenesis inhibitor
to be associated with negative tumor regulation was thrombospondin-1.37   Since then, numerous
endogenous inhibitors have been identified, including angiostatin, endostatin, antiangiogenic
antithrombin III, pigment epithelium-derived factor, 2-methoxy-estradiol, vasostatin, canstatin
and some 20 others.38-40   The phenomenon of concomitant tumor resistance, in which removal of
a primary tumor leads to growth of metastases, has been attributed to the production by primary
tumors of circulating antiangiogenic molecules, such as angiostatin and endostatin.2,18  While the
mechanisms of action of many endogenous inhibitors remains poorly defined, inhibition of
endothelial cell migration, proliferation and induction of endothelial cell apoptosis have all been
described.41,42   



The angiogenic cascade
Angiogenic growth factors elaborated by tumor cells and tumor-infiltrating inflammatory

cells initiate a well-characterized cascade of cellular and molecular events:

Angiogenic growth factor production and release
Angiogenic growth factors diffuse towards nearby pre-existing blood vessels (venules

and capillaries) and bind to unique receptors located on endothelial cells and their precursors.
Among the best studied are the cognate receptors of VEGF (VEGFR-1/Flt-1, VEGFR-
2/KDR/Flk-1, VEGFR-3/KDR, Flt-1, VEGF-R2, VEGF-R3/Flt-4, VEGF-R4/neuropilin-1).22

Participating cells may be derived from adult endothelium or circulating endothelial progenitor
cells.43

Endothelial receptor binding and activation
Growth factor ligand-receptor binding initiates receptor dimerization and activation of

multiple signal transduction pathways, including phosphorylation of tyrosine kinases, protein
kinases, and MAP kinases, leading to endothelial gene expression and cell proliferation.44-46

VEGF and bFGF ligand-receptor binding also leads to expression of antiapoptotic molecules,
such as Bcl-2 and survivin, suggesting that certain growth factors promote endothelial cell
survival.47,48   The angiogenic mediator angiopoietin-1 promotes antiapoptosis through
phosphorylation of the Tie-2 receptor and the phosphatidylinositol 3’-kinase/Akt signal
transduction pathway.49

Formation of angiogenic mother vessels
Once endothelial cells become activated, the parent vessel undergoes a discrete

morphological change, enlarging in cross-sectional area by 3-to-4 fold to form a  ‘mother’ vessel
originating from capillaries or venules.50  Mother vessels are characterized by a thinned
endothelial cell lining, increased endothelial number, decreased pericyte numbers, pericyte
detachment, and basement membrane degradation.   In the setting of VEGF, mother vessels are
hyperpermeable, with increased numbers of fenestrae and prominent collections of vesiculo-
vacuolar organelles (VVO), compared to normal microvessels.51  Hence, some of the earliest
histopathological features of angiogenesis are local microvascular dilatation, hyperpermeability,
extravascular fibrin deposition and edema.

Morphogenesis of mother vessels
Newly formed mother vessels are transient, lasting only days.  They then undergo at least

four divergent morphological pathways:  i) muscular artery/vein formation (occurring in 1-3
months); ii) vascular bridging (occurring in 3 days - 3 weeks);  iii) intussusceptive microvascular
growth (occurring in days - weeks)  iv) sprouting angiogenesis microvessels (occurring in
days).51   Mother vessels may retain their large bore size, acquire a smooth muscle and internal
elastica, and evolve into medium-sized arteries and veins.  Alternatively, the endothelium of a
mother vessel may project cytoplasmic structures into the lumen that form translumenal bridges,
eventually dividing the main channel into smaller separate well-differentiated channels, known
as 'daughter' vessels.  In other instances, the bridging central structure evolves into a
disorganized glomeruloid vascular body.  A third fate involves focal invagination of connective
tissue pillars from within the mother vessel, forming longitudinal splitting of the main vessel into
two smaller vessels, a process called  intussusception.52,53   Vascular branching may be mediated



by fibroblast growth factor.54   Finally, mother vessels may undergo endothelial cell sprouting,
the best characterized process of tumor angiogenesis.55   The remainder of this discussion will
focus on the steps following sprouting angiogenesis.

Basement membrane dissolution
Sprouting angiogenesis requires the focal dissolution of the basement membrane

surrounding mother vessels.  Activated endothelial cells in the mother vessel secrete a number of
proteolytic enzymes, including plasminogen activator and matrix metalloproteinases, enabling
endothelial cells to exit the vessel ablumenally.56

Endothelial cell proliferation
In contrast to the quiescent endothelium of mature, nonpathological blood vessels,

activated angiogenic endothelial cells proliferate rapidly.55,57

Endothelial cell migration
Proliferating endothelial cells migrate out of the mother vessel into the extracellular

matrix towards the angiogenic stimulus.58  Destabilization of the mother vessel architecture is
important for vascular sprouting.  In the presence of VEGF, angiopoietin-2 binds to the Tie-2
receptor, competitively displacing angiopoietin-1.  This ligand-receptor interaction triggers a
decoupling of endothelial cells, pericytes, smooth muscle cells and extracellular matrix in
angiogenic regions.59,60   Angiogenic endothelial cells express adhesion molecules known as the
"v$3 and "v$5 integrin that facilitate migration and vascular survival 61,62  At the sprouting tips of
growing vessels, endothelial cells secrete matrix metalloproteinases that enable invasion.63,64

Vascular tube formation
The formation of a lumen within an endothelial cell tubule requires interactions between

cell-associated surface proteins and the extracellular matrix.  Among the identified cell surface
proteins are hybrid oligosaccharides, galectin-2, PECAM-1, and VE-cadherin.65-67   Creation of
vascular lumens involves co-migration of three populations of endothelial cells as a single cord-
like structure.  An internal endothelial population is sheathed by a second cell population
possessing numerous intracellular vacuoles.  The internal population undergoes rapid apoptosis
within 12 hours of formation.  The vacuoles of the surrounding population fuse with the plasma
membrane and are secreted.  The net result is extensive remodeling of the center of a solid
vascular cord into a lumen.  A third endothelial population intersperses with the formed
endothelial outer layer and expands the lumenal circumference.68   It has been suggested that
tumors may also form vascular channels without the participation of endothelial cells, but the
occurrence and explanation of this phenomenon remains controversial.69,70

Arterial-venous differentiation
Vascular tubes differentiate into vascular loops, defining functional arterial and venous

sides of the neovasculature.   While little is known about this process, key insights have been
derived from studies of vasculogenesis, or embryonic vascular development.   Molecular cues on
the afferent and efferent arms of differentiating vessels are provided by the ephrin-B2
transmembrane ligand (marking arterial endothelium) and its receptor, Eph-B4 (marking venous
endothelium).71,72   Ephrin ligand-receptor interactions occur at the cell-cell juncture of arterial-
venous anastomoses and along the length of a newly forming arterial vessel and an adjacent



vein.73   In the nervous system, ephrin-Eph guides axonal growth, maintains boundaries between
neuronal compartments, and prevents inappropriate nerve cell mixing.  Analogously, ephrin-
B2/Eph-B4 in angiogenesis is thought to guide patterned development of arterial and venous
boundaries.74

Vascular stabilization
Before blood flow begins, newly formed vessels are stabilized through the recruitment of

smooth muscle cells and pericyte.  These periendothelial cells are associated in varying degrees
with virtually every portion of the vascular system.  Binding of ephrin-Eph mediates signals
between endothelial cells and mesenchymal cells.72   The angiopoietin family of molecules also
plays a central role, where angiopoitetin-1(Ang-1) binds to the Tie-2 receptor on angiogenic
endothelium.  Ang-1/Tie-2 leads to: 1) promotion of vascular tubule formation; 2) promotion of
endothelial survival; and 3) secretion of PDGF and other chemokines that recruit smooth muscle
cells and pericytes to the new vessel.75-77  Co-cultures of pericytes or smooth muscle cells with
endothelial cells show that cell-cell contact between these two populations leads to the secretion
of activated transforming growth factor-beta, an endogenous angiogenesis inhibitor.78   Vascular
stabilization thus also facilitates suppression of further angiogenesis.  Angiopoietin-2 (Ang-2) is
a competitive ligand for the Tie-2 receptor, whereby  Ang-2/Tie-2 binding destabilizes vessels by
uncoupling periendothelial cells from endothelial cells.60   In the presence of VEGF,
Angiopoietin-2 is permissive of angiogenesis.  In the absence of VEGF, Ang-2-/Tie-2 binding
leads to endothelial cell apoptosis and vascular regression.79

THERAPEUTIC TARGETING

The clinical development of antiangiogenic therapy for cancer is advancing rapidly.  In
1988, interferon alfa2a was first used as an antiangiogenic drug to treat children with life-
threatening hemangiomas, a nonmalignant vascular tumor.14,80   The first selective angiogenesis
inhibitor, TNP-470, was launched into clinical trial in 1992 for Kaposi’s sarcoma and cancer of
the prostate and cervix.  By the start of year 2000, more than 40 inhibitors had entered clinical
trial, with more than one dozen in Phase III studies.81   A wide variety of therapeutic strategies
have been devised, targeting one or more steps of the previously described angiogenic cascade
(Table 2).

Classifications
The term 'antiangiogenic drug' is used to describe a diverse group of agents that affect

newly growing blood vessels.  The pharmacologic targeting of tumor blood vessels may be
divided into three major categories: 1) true angiogenesis inhibitors; 2) vascular targeting agents;
and 3) non-selective antiangiogenic agents.  All three are presently in human clinical trials
(Table 3).

True angiogenesis inhibitors halt only vascular sprouting and do not destroy pre-
established blood vessels within a tumor.  In experimental systems, true angiogenesis inhibitors
generally slow tumor growth.  Their action becomes manifest in several days to a week or more.
Clinically, the expected effect of true angiogenesis inhibitors is disease stabilization rather than
tumor regression, although individual cases of partial or complete response have been reported in
cancer patients.82,83



Vascular targeting agents destroy the pre-existing tumor vasculature.   In animal studies,
the effect of these agents is observable within hours.84,85    Acute endothelial cell death, tumor
vessel thrombosis, and tumor mass hypoxia and necrosis result.  Clinically, vascular targeting
agents result in acute tumor pain.86

Nonselective antiangiogenic agents exert antiproliferative, anti-invasive or cytotoxic
effects on multiple cell types, including angiogenic endothelial cells.87   Pure selection of
endothelium is not achieved with these agents, although adjustment of drug dose, schedule, or
delivery mode may produce marked anti-endothelial effects.   Several conventional cytotoxic
chemotherapeutic drugs have shown antiangiogenic effects when administered to mice at
concentrations far below the established maximum tolerated doses.88

Antiangiogenic targets
The elucidation of discrete steps in the angiogenic cascade enables the rational

development of antiangiogenic drugs.  Current drugs in clinical trials exploit several broad
targeting strategies aimed at angiogenic blood vessels.

Growth factor antagonists
The antagonism of growth factor production, transport, or receptor binding is an upstream

approach to antiangiogenic therapy.  Several drugs, such as suramin, interferon alpha, and
Angiozyme, suppress production of angiogenic growth factors.89-91  Monoclonal antibodies and
soluble receptors have been developed against VEGF.20,92,93  VEGF targeting may also promote
endothelial apoptosis by suppressing the production of paracrine survival factors.47,48

Endothelial cell signal transduction inhibition
Small molecule drugs have been developed to inhibit the endothelial signal transduction

caused by specific growth factor-receptor binding.  Both selective (against VEGF or PDGF) and
non-selective agents (either VEGF/bFGF/PDGF) are in clinical trial.  Preclinical studies suggest
that some of these agents may be more potent against slowly growing tumors than against
rapidly growing tumors, possibly reflecting a broader expression of different angiogenic factors
in the latter.94   Examples of such agents include SU5416,  SU101, SU6668, and ZD4190.

Inhibitors of endothelial cell proliferation
A variety of antiangiogenic agents inhibit endothelial cell proliferation.95  Selective

endothelial inhibitors are desirable because pathological endothelium is localized while the
normal vascular endothelium, outside of the female reproductive system, remains quiescent.
Non-selective inhibitors may show more dose-dependent effects favoring inhibition endothelial
proliferation.  Examples of both types of agents include TNP-470, thalidomide, squalamine, and
captopril.

Matrix metalloproteinases inhibition
Inhibition of matrix metalloproteinases (MMP) activity interferes with both endothelial

and tumor cell invasion into the extracellular matrix at primary and metastatic sites.  The family
of known MMPs comprise at least 20 distinct enzymes, of which MMP-2 (gelatinase A) and
MMP-9 (gelatinase B) are closely associated with angiogenesis.63,96,97   Selective and non-
selective MMP inhibitors are now in advanced clinical trial.  Examples of these agents include
Marimastat, AG3340 (Prinomastat), Col-3, Neovastat, and BMS275291.



Endothelial surface marker targeting
Markers associates with tumor vasculature represent attractive targets for drug

development.  Integrins are cell surface receptors selectively expressed on angiogenic endothelial
cells.98   Disruption of the "v$3 integrin by monoclonal antibodies or cyclic peptides leads to
activation of p53 and endothelial cell apoptosis.99  Prostate-specific membrane antigen (PSMA)
has also been identified as an angiogenic target.100  Examples of drugs in clinical trial include
Vitaxin (humanized LM609), EMD121974.

Suppression of endothelial progenitor cells
At least one antiangiogenic agent, angiostatin, appears to preferentially select endothelial

progenitor cells, compared to mature endothelial cells.101

Lessons from Early Clinical Trials
As the development of antiangiogenic therapy matures, an analysis of emerging clinical

trial lessons reveals important insights for guiding new basic research and optimizing
biopharmaceutical efforts:

1. Animal studies do not directly translate to human studies
Preclinical studies of nearly every antiangiogenic agent in clinical trial have shown rapid

and dramatic antitumor responses in mice bearing experimental tumors.102   As a general rule,
these effects have not been recapitulated in Phase I and II trials of the same agents in human
cancer patients.  Genotypic and phenotypic differences may exist between experimental tumor
lines and spontaneous tumors in patients.  Additionally, cancer patients have co-morbidities,
drug regimens, and other environmental and dietary variables that may influence the angiogenic
response.103   The development of optimal animal models for studying antiangiogenic agents in
human disease is a major research goal.104

2. Host responder characteristics remain poorly understood
Of the estimated more than 6,000 patients who have received antiangiogenic

monotherapy in clinical trials, three distinct groups have emerged: non-responders; patients with
stabilized disease; and less frequently, patients with partial or, rarely, complete tumor
shrinkage.11  The interindividual traits that contribute to the heterogeneous response is not
understood.  Recent data suggests that immunologic, bone marrow, and monocyte characteristics
may influence patient response to angiogenesis modulators.105-107   A detailed understanding of
host responder traits will enable improved clinical trial design, more precise matching of drug to
disease, and enrollment of optimal patients for efficacy studies.

3. Combination therapy may enhance clinical outcome
A growing number of clinical trials combine an antiangiogenic agent with a cytotoxic

agent or radiation.108  The rationale comes from experimental work showing that reducing tumor
vascularity paradoxically increases intratumoral penetration of chemotherapy agents.109-111 as
well as tumor cell radiosensitivity.112



4.  Conventional oncology trial strategies require modification
Most antiangiogenic agents are not directly cytotoxic to tumor cells.  Accordingly,

previous clinical trial strategies for cytotoxic chemotherapy drugs may not be appropriate.  For
example, Phase I studies of antiangiogenic therapy should seek the optimal biological dose
(OBD) rather than maximal tolerated dose (MTD).113-115   Phase II studies may select disease
stabilization or time to progression as a primary measure of success, rather than tumor
regression.114,116   Suppression of minimal residual disease using monotherapy may be more
effective than primary attack on large, established primary tumors.  Chronic, lifetime therapy is
envisioned with these agents, and long-term trials of suppression will be required.  Modification
and standardization of trial strategies in alignment with biological principles is necessary for
optimizing efficiency in pharmaceutical development of this field.

5.  Cytostatic agents that do not change tumor mass require new standards for monitoring
therapeutic response and imaging

With antiangiogenic therapy, evaluation of tumor size alone is inadequate.
Antiangiogenic agents exert their effects on the tumor vasculature, so efforts are underway to
adapt imaging technologies to capture changes in the tumor vasculature and to identify surrogate
markers reflecting the angiogenic burden.  Some clinical trial protocols incorporate measurement
of angiogenic growth factors in patient serum, urine and other body fluids, although clinical
validation of these surrogate markers with respect to therapy has not yet been established.117

Serial tumor biopsies with histopathological staining and counting of tumor microvessels has
been proposed, but this is invasive and impractical for the large numbers of patients required in
late-stage clinical trials.  A number of available imaging modalities (CT, MR, PET, ultrasound)
are adaptable to focus on vascular features.  Validation and standardization of monitoring
techniques for antiangiogenic therapy is a major requirement of the field.118

IMAGING ANGIOGENESIS

The clinical monitoring of antiangiogenic therapy requires an imaging modality that is
capable of detecting tumor vascularity and its changes with high sensitivity and specificity.
Tumor blood flow, blood volume, vascular density, and metabolism are anatomically and
functionally associated with tumor angiogenesis.119   The small size (< 100 ìm) of microvessels
precludes direct visualization by conventional angiography.  Patients enrolled in cancer trials
often have late-stage disease, with a heavy tumor burden.  Such tumors will possess an extensive,
established vascular supply.  Angiogenesis imaging systems, therefore, must be able to
accurately quantify small changes against a potentially large signal background.  Furthermore,
antiangiogenic therapy is envisioned to require lifelong treatments, so a non-invasive, cost-
effective technique would be highly desirable.

Existing technologies and techniques
Since tumor size monitoring will remain an important clinical goal for oncologists,

conventional cancer imaging modalities are being examined for their ability to capture
parameters reflecting the tumor vasculature:



Computed tomography (CT)
CT imaging can be performed with contrast agents to define the intravascular

compartment, including blood flow, blood volume, mean fluid transit time, and capillary
permeability.120   Functional CT techniques can delineate increases in tissue perfusion that may
reflect malignancy, even when there is no gross anatomical abnormality present.121

Ultrasound
Ultrasound imaging can identify vascular features in tumors at different levels of

resolution (40 - 200 micron diameter vessels), depending upon the technique employed.
Contrast-enhanced ultrasound using an intravascular agent can generate an index of blood flow,
blood volume, or vascularity within malignant tissue.  Targeted imaging using ultrasound
destruction of microbubbles may provide even further resolution of the tumor vascular tree.122

Color flow doppler has been used to characterize tumor xenografts in mice123 and solid tumors in
patients.122,124

Magnetic resonance (MR)
MR imaging can define both blood volume and blood vessel permeability using dynamic

enhancement of blood pool contrast agents.  Gadolinium-DTPA can distinguish between normal
(non-leaky) versus malignant (leaky) tissues, reflecting the hyperpermeable tumor vasculature.125

Contrast uptake also correlates with microvessel density in experimental tumors.126

Administration of an anti-VEGF monoclonal to experimental breast cancers in mice produces
decreased vascular permeability that is detectable by MRI.127

Positron Emission Tomography (PET)
PET imaging  is used to evaluate tumor metabolism, as well as blood flow and volume.

A number of radiotracers, such as H20
15, 11CO, and 18FDG, are available to characterize

neoplastic tissue.  Antiangiogenic agents should diminish blood flow and subsequently decrease
tumor metabolism.  PET scanning is currently being used by the National Cancer Institute to
study the effects of antiangiogenic agents.   Radiolabeled fluoromisonidazole (FMISO) has been
used to quantitate hypoxia in the rat glioma by PET and may provide functional information
about the results of antiangiogenic therapy.128

Novel imaging strategies
Specific molecular features of the tumor vasculature may be exploited for imaging:

Targeting integrins
Angiogenic endothelial cells express adhesion molecules that possess the RGD-motif,

known as the "v$3 and "v$5 integrins.129  Monoclonal antibodies directed against the "v$3

integrin (LM609) have been covalently bound to paramagnetic liposomes (PML) to create a
targeted imaging system capable of imaging tumor angiogenesis in a VX2 rabbit carcinoma by
magnetic resonance.130  The PML may also carry a payload consisting of an antiangiogenic or
cytotoxic drug, a radioisotope, or a signal-enhancing moiety, thereby enabling additional targeted
delivery to and imaging of angiogenic endothelium and tumor.  Another approach employs
phage display libraries to detect tissue-specific endothelial cell markers against which homing
peptides, linked to a therapeutic or signal-enhancing molecule, can be addressed.131,132



Imaging endothelial cell apoptosis
A number of antiangiogenic agents have been shown to cause endothelial and tumor cell

apoptosis.  Markers of cell endothelial cell apoptosis, such as annexin V, may be adapted for
radiolabeling and imaging of sites showing antiangiogenic and anti-tumor drug action.133

Vascular stabilization/angiopoietins
The tumor vasculature, unlike healthy blood vessels, are heterogeneous, immature and

lack architecture stability.134,135  Selective imaging of either angiopoietin-1 (required for vascular
stabilization) or angiopoietin-2 (required for destabilization) may localize and evaluate the state
of the tumor vasculature.

Infrared signature
Infrared sensing of highly angiogenic tumors growing in mice demonstrates temporal

evolution of the thermal signature (Li WW et al, Unpublished data).  Clinical investigations have
shown thermal anomalies associated with breast tumors, although molecular correlation to tumor
angiogenesis has not yet been shown.136,137  The availability of high-resolution military and
aerospace-grade infrared sensors, coupled to sensitive endothelial molecular markers, now
enables detailed study of the infrared and hyperspectral signature characteristics of tumor
angiogenesis.  Infrared assessment of tumor angiogenesis may provide a convenient, noninvasive
imaging system to monitor antiangiogenic drug therapy.

SUMMARY

Rapidly accumulating knowledge of tumor angiogenesis is providing critical insights into
the biology of cancer as well as new opportunities for clinical intervention and imaging.
Antiangiogenic and anti-vascular agents represent a new approach to cancer therapy.  Although
some animal experiments show that tumor regression may occur following angiogenesis
inhibition, clinical trials of the first wave of antiangiogenic agents suggest that disease
stabilization, rather than cure, is a likely outcome in late-stage cancer patients.  Combination
therapies, treatment of earlier-stage disease, and an improved understanding of host-responder
characteristics are likely to improve the clinical result.

Imaging the tumor vasculature itself is a critical goal for optimizing the development of
antiangiogenic therapy.  Conventional techniques (CT, MR, ultrasound, PET) that are ordinarily
used to document tumor mass may be adapted to measure vascular parameters such as blood
flow, blood volume, permeability, microvessel density, and tumor metabolism.  Tumor vessels
are architecturally heterogeneous, so blood flow is dynamic in some regions and stagnant in
others.  Conventional imaging may therefore offer only limited information regarding the tumor
response to antiangiogenic therapy.   The late stage of cancer diagnosis in many patients presents
a large and pre-established population of tumor blood vessels from which to measure change
after therapy, making high sensitivity of the imaging system essential.

Future approaches for imaging angiogenesis per se will likely exploit the molecular
features of new blood vessel growth.   Novel imaging targets include cell surface integrins,
endothelial apoptosis, angiopoietins and infrared signature of angiogenesis.  These new imaging
modalities, combined with optimized trial design and more potent antiangiogenic agents will



create a robust platform for bringing antiangiogenic cancer therapy into standard oncology
practice.
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TABLE 1.  Known angiogenic growth factors

Angiogenin
Del-1 protein
Fibroblast growth factor: acidic (aFGF) and basic (bFGF)
Follistatin
Granulocyte colony-stimulating factor (G-CSF)
Hepatocyte growth factor (HGF)/scatter factor (SF)
HIV-Tat
Interleukin-3 (IL-3)
Interleukin-8 (IL-8)
Leptin
Midkine
Placental growth factor
Platelet-derived endothelial cell growth factor (PD-ECGF)
Platelet-derived growth factor (PDGF)
Pleiotrophin (PTN)
Proliferin
Transforming growth factor-alpha (TGF-alpha)
Transforming growth factor-beta (TGF-beta)
Tumor necrosis factor-alpha (TNF?)
Vascular endothelial growth factor (VEGF)/vascular permeability factor (VPF)

TABLE 2.  Therapeutic targets in tumor angiogenesis

Growth factor antagonists
• Inhibition of angiogenic factor production
• Anti-growth factor ribozymes
• Soluble growth factor receptors
• Monoclonal antibodies directed against angiogenic factors

Endothelial cell signal transduction inhibition
• Receptor tyrosine kinase inhibition
• Protein kinase C inhibition

Inhibitors of endothelial cell proliferation
• Cell-cycle inhibitors

Matrix metalloproteinases inhibition
• Selective inhibitors of MMP-2, MMP-9
• Non-selective MMP inhibition



Endothelial surface marker targeting
• Anti-integrin antibodies or cyclic peptides

Endothelial cell subpopulation inhibitors
• Suppression of endothelial progenitor cells

Endothelial cell destruction
• Vascular targeting agents

TABLE 3.  Classification & examples of agents in clinical trials that affect tumor vasculature

Agent                                                                                      Sponsor

True angiogenesis inhibitors
a) Specific inhibitors of angiogenic growth factors

•  Angiozyme Ribozyme Pharmaceuticals
• Avicine AVI Biopharma
•  Suramin NCI
•  rhu MabVEGF Genentech

b) Inhibitors of growth factor-receptor binding
•  IMC-1C11 ImClone
•  IM862 Cytran
•  PI-88 Progen Industries

c) Specific tyrosine kinase inhibitors
•  PTK787 Novartis
•  SU5416 SUGEN
•  SU6668 SUGEN

d) Anti-endothelial proliferative agents
•  TNP-470 TAP Pharmaceuticals

e)  Anti-integrin agents
•  EMD121974 Merck KgaA
•  Vitaxin MedImmune

f) Inhibitors of angiogenic factor production
•  Octreotide Novartis

g) Upregulators of angiogenesis inhibitors
•  ImmTher Endorex

h) Unknown mechanism
•  Angiostatin EntreMed
•  Endostatin  EntreMed

Vascular targeting agents
a) Anti-tubulin agents

• Combretastatin A4 Prodrug OXiGENE
b) Ion transport inhibitors



• Squalamine Magainin Pharmaceuticals
c) Receptor-driven inducers of endothelial apoptosis

• CM101 CarboMed

Nonselective antiangiogenic agents
a) Low-dose cytotoxic chemotherapy drugs

• Cyclophosphamide
• 5-Fluorouracil
• Methotrexate
• Vinblastine

b) Matrix metalloproteinase inhibitors
• BMS275291 Bristol-Myers Squibb
• Captopril Bristol-Myers Squibb
• Col-3 CollaGenex
• Marimastat British Biotech
• Neovastat Aeterna Laboratories
• Prinomastat Agouron Pharmaceuticals
• Solimastat British Biotech

c) Anti-cytokine agents
• Thalidomide Celgene Corp.
•  CC 4047 Celgene Corp.
•  CC 5013 Celgene Corp.
•  CC 7085 Celgene Corp.
•  CDC801 Celgene Corp.

d) Cox-2 inhibitors
• Celecoxib GD Searle

e) Anti-tubulin agents
• Paclitaxel Angiotech

f) Cell locomotion inhibitors
• Interferon alfa2a Hoffman-LaRoche

g) Ion flux inhibitors
• Carboxyamidotriazole NCI

h) Anti-mitochondrial agents
• Apra Cell Therapeutics

i)  Nonspecific tyrosine kinase inhibitors
• Flavopiridol NCI
•  Genistein Amino A

j) Copper-lowering agents
• D-Penicillamine NCI
• Tetrathiomolybdate University of Michigan

k) Cell cycle inhibitors
•  Ro 317453 Roche
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RECOMMENDATIONS

Functional CT techniques have been validated as tools for measurement of various
physiological parameters within human tumors. However, further study is required to validate
their use as markers for the efficacy of anti-angiogenesis therapy. Specifically, a correlation
between histopathological features of angiogenesis (e.g. microvessel density, expression of
vascular endothelial growth factors) and functional CT imaging parameters needs to be
established for a range of tumors. Data should also be obtained to demonstrate the changes in
functional CT parameters resulting from anti-angiogenesis therapy. Such data could be readily
obtained by including functional CT into research protocols that currently use conventional CT
to monitor the morphological effects of anti-angiogenesis treatments.

One important advantage of CT is that it can be used to study almost all tumors in the
human body.  The following is a guide to the application of functional CT in tumor imaging:

Primary Tumors
lung, pancreas, kidney, lymphoma: perfusion, blood volume, MTT
liver: perfusion
brain: capillary permeability

Secondary Tumors
lung, mediastinum, abdomen,
pelvis, superficial metastases: perfusion, blood volume, MTT
liver: perfusion

Specific recommendations in the development of CT functional imaging in angiogenesis:

1. Techniques should be developed so that more than one functional parametric map can be
derived from a single study.

2. The optimization of contrast-to-noise ratio with respect to patient dose should be investigated
more fully.

3. The expected heterogeneity of tumor physiology would argue strongly for the usage of multi-
slice scanners so that at least 2 cm in the axial direction can be covered.  For cases where
more than 2 cm is required, additional study with a second injection of contrast agent is
warranted.  The second study can be delayed by as short as 10 minutes from the first study.



4. The strength, volumes and injection rates of contrast media need to be tailored to the analysis
method employed.  The Fick principle based method requires injection rates above 10 ml/s,
whereas the deconvolution based method and model dependent methods, namely, the two-
compartment Patlak model and the distributed parameter model, requires a lower injection
rate around 3-4 ml/s.

5. The framing rate, which determines the patient dose if the technique parameters for each
image remain the same, is dependent on the parametric maps as shown in Table 2.

Table 2.
Parametric Maps Framing rate
Blood flow 1-3 s per image
Mean transit time 1-3 s per image
Blood volume 1-5 s per image
Capillary permeability 1-10 s per image

6. The development for clinical use of novel CT contrast agents with long vascular residence
times or larger molecular weights would improve the measurement of permeability
especially, but also of perfusion, blood volume and transit time.
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RECOMMENDATIONS

1. For validation of any proposed imaging method hypothesized to assess tumor angiogenesis,
strong adherence is urged for the use of established surrogates of angiogenesis, defined by an
established technique.  In this way, the relative merits of various imaging methods can be
more easily compared and potential bias introduced by “new” or non-quantitative
angiogenesis measures can be avoided.

2. A mechanism should be established for the sharing of raw data among established
investigators in the MRI/angiogenesis field, from both preclinical and clinical studies, to be
used for evaluation of alternative and potentially superior analysis methods and to more
quickly fulfill the need for statistical significance.

3. Confirmatory studies should be encouraged/supported to reproduce published  “positive” or
“promising” results from other investigators.

4. Comparison studies are to be encouraged/supported to determine which MRI methods work
best or best in combination and to refine MRI acquisition techniques.  Questions to be
answered include; Which contrast medium, or no contrast medium, works best? Pulse
sequences? 2D vs 3D? Does arterial input function need to be monitored? What analysis
method? Which kinetic model? How many data points are necessary? With what temporal
resolution?  Best methods to display information? etc.

5. There is an urgent need for preclinical testing of the different imaging approaches on the
anti-angiogenic drugs entering clinical trials. To facilitate that, there should be a mechanism
for making these drugs available for pre-clinical imaging studies.
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CONCLUSION/RECOMMENDATIONS

A wide variety of radiopharmaceuticals are available to measure a number of parameters
that are altered by the use of anti-angiogenic drugs.  In a number of cases these tracers have been
fully validated, the methods are highly sensitive to changes in the biochemical process, and the
parameters can be extracted from a single image.

With few exceptions, the effect of anti-angiogenic drugs on parameters that can be
measured by nuclear imaging has not been evaluated.
It is recommended that:
§ techniques currently being used in ongoing clinical trials of anti-angiogenic drugs be studied

in animal models to evaluate the changes induced by anti-angiogenic therapy.  These
parameters include flow, metabolism blood volume and permeability.  Positron tomography
has the strength that the radionuclides involved (18F, 11C, 13N) are constituents of many
drugs.

§ anti-angiogenic drugs themselves be labeled with these radionuclides to directly study the
pharmacokinetics of the drug.

 
 At the same time new approaches to monitoring anti-angiogenic drugs including

integrins, annexin V, hypoxia agents, proliferative indices, and various receptor ligands should
be evaluated in animal models.  At the present time the animal model used are wild type tumor
cell lines.  It is recommended that:
§ genetically altered cell lines and transgenic animals for tumors known to undergo

angiogenesis be developed.
§ reported gene imaging strategies be applied to address specific molecular and cellular

processes related to anti-genesis.  At the present time, flow metabolism and blood volume
changes following anti-angiogenic therapy are being monitored.  Companion studies that are
possible to be included in ongoing clinical trials include; - the monitoring of permeability,
monitoring of metabolism (FDG), monitoring of flow, monitoring of blood volume and co-
registration with either MR or CT.



Nuclear imaging allows the quantification of many parameters believed to be important
in anti-angiogenic therapy.  These parameters must be validated in animal models and could be
an important index of the efficacy of anti-angiogenic therapy.

Nuclear/PET Recommendations
§ Look at currently used methods (flow, metabolism, blood volume, permeability) in ongoing

clinical trials
§ Label anti-angiogenic drugs with radionuclides to directly study pharmacokinetics of the

drug
§ Evaluate and validate new approaches to monitoring anti-angiogenic drugs

® Integrins
® Annexin V
® Hypoxia agents
® Proliferative indices
® Receptors

 
 Desirable Characteristics of Tracers
§ Widely available
§ Fully validated
§ Highly sensitive to changes in the biochemical process
§ Biochemical parameters can be extracted from a single scan
 
 Validation Studies
§ Established imaging strategies for flow, metabolism, permeability, blood volume

® Response to therapy in animal models using imaging techniques (PET, SPECT)
§ Evaluation and validation of new approaches in animal models

® Currently used wild-type tumor cell lines and animal models
® Develop genetically altered cells lines and transgenic animals
® Apply reporter gene imaging strategies to address specific molecular and cellular

processes related to angiogenesis
§ Quantitation of biochemical parameters before and after therapy
 
 Companion Studies to Ongoing Trials
§ Monitoring of permeability

® Ga-67/68 transferrin for PET and/or SPECT
® Radiolabeled albumin (i.e. F-18, I-123, Tc-99m)

§ Monitoring of metabolism (FDG)
§ Monitoring of flow

® i.e. O-15 labeled water, Tc-99m sestaMIBI, Tl-201
§ Monitoring of blood volume

® i.e. O-15-labeled CO, Tc-99m-labeled RBCs
§ Co-registration with either MR or CT?
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RECOMMENDATIONS

Contrast Ultrasound
The contribution of ultrasound to the evaluation of tumor neovascularity at all stages of

tumor development deserves further investigation. Because of its unique capability of evaluating
both structure and function, ultrasound has the potential of providing effective, low cost,
sequential monitoring of vascular changes associated with the development of malignant tumors
and the response of tumors to treatment. Although pathologic studies of cancer demonstrate an
increased number of small microvessels, these vessels are not selectively imaged with computed
tomography, magnetic resonance or conventional ultrasound and Doppler.  Consequently, the
non-selective enhancement provided with these modalities results in limited cancer detection.  In
contrast to these conventional forms of vascular enhancement, intermittent ultrasound and
contrast ultrasound in general present a unique opportunities to selectively enhance different
levels of the microvasculature.  These techniques should be developed further in the near future,
and also considered for incorporation in clinical trials.

High frequency ultrasound
The ability of high frequency ultrasound to measure sub mm/s flow velocities in the

microcirculation as well as its ability to detect changes in cell viability via modulation of the
backscatter coefficient make it a unique tool for the assessment and monitoring of angiogenically
active processes in tissue. This technology should be further developed and evaluated in mouse
models to improve and validate its quantitative capabilities in regard to the monitoring of
angiogenesis.  In particular, emphasis should be placed on examination of vessel morphology, as
this aspect of angiogenesis is not readily studied with other imaging methods.  The results of this
effort should then be translated to clinical studies of ocular melanoma, malignant melanoma,
basal cell carcinoma, and Kaposi’s sarcoma and their responses to anti-angiogenic treatment.

Doppler ultrasound
The contribution of Doppler ultrasound to the evaluation of tumor neovascularity at all

stages of tumor development deserves further investigation. Current clinical results using
ultrasound have produced mixed results. This is due, at least in part, to the lack of ultrasound

instrumentation designed specifically to detect and display tumor neovascularity, which should
be the subject of additional research.



Targeted imaging agents
The promise of targeted imaging is that earlier stages of cancer and the efficacy of anti-

angiogenic therapies might be diagnosed based on detection of molecular epitopes.  At this point,
the feasibility of ultrasound detection of such agents has been demonstrated in vitro, and in vivo
for thrombus and activated leukocytes, but not yet in tumors.  The advantage of targeted
ultrasound imaging, in comparison to other imaging modalities, is the sensitivity of ultrasound to
detect a single small bubble.  This area should be the subject of significant research efforts in the
near future.


